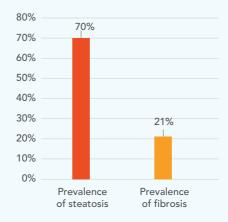
Advanced Liver Fibrosis Is Common in Patients With Type 2 Diabetes Followed in the Outpatient Setting: The Need for Systematic Screening

Lomonaco R, et al., Diabetes Care 2021;44(2):399-406


Objectives	• To assess the prevalence of steatosis & moderate-to-advanced fibrosis by transient elastography in unselected patients with type 2 diabetes mellitus (T2DM) attending a general internal medicine, family medicine, or endocrinology outpatient clinic
Method	LSM by VCTE [™] and CAP [™] were performed with M or XL probe, according to automatic probe selection tool LSM by VCTE [™] cut-off values [reference to Eddowes PJ., Gastroenterology 2019] • F1; mild fibrosis; >= 7 - 8.1 kPa • F2; moderate fibrosis; >= 8.2 - 9.6 kPa • F3; advanced fibrosis; >= 9.7 kPa - 13.5 kPa • F4; cirrhosis; >=13.6 kPa CAP [™] cut-off values • S1; mild; 274 - 289 dB/m • S2; moderate; 290 - 301 dB/m • S3; severe; >= 302 dB/m Patient with presence of liver fibrosis diagnosed by concordant non-invasive tests (VCTE [™] & APRI and /or FIB-4) were proposed a liver biopsy
Patients analyzed	 561 patients with T2DM
Results	 Fibrosis & Steatosis Prevalence Prevalence of steatosis (CAPTM>=274 dB/m) & fibrosis (LSM>=7.0 kPa) were 70% & 21%, respectively (cf. Fig. 1) Moderate fibrosis (F≥2: LSM>=8.2 kPa) was present in 15% Severe fibrosis or cirrhosis (F3-4; LSM>=9.7 kPa) was present in 9% Elevated AST or ALT>=40 units/L was present in a minority of patients with steatosis (8% & 13% respectively) or with moderate-to-advanced fibrosis (18% & 28% respectively) → this suggests that AST/ALT alone are insufficient as initial screening Liver Biopsy Among those with LSM>=8.2, 21 has a liver biopsy Liver fibrosis was confirmed by biopsy in 90% of cases.

VCTETM: Vibration Controlled Transient Elastography • LSM: Liver Stiffness Measurement • CAPTM: Controlled Attenuation Parameter • APRI: AST/Platelet Ratio Index • FIB-4: Fibrosis-4 Index • T2DM: Type 2 Diabetes Mellitus • AST: Aspartate Aminotransferase • ALT: Alanine Aminotransferase

Key points

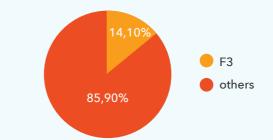
- Moderate-to-advanced fibrosis (F≥2) assessed by LSM by VCTE™, affects at least one out of six (15%) patients with T2DM
- Steatosis evaluated by CAP[™] is present in almost 75% of patients

FIGURE 1 Proportion of patients with T2DM screened in the outpatient clinical setting having liver steatosis (measured by CAP™) & with liver fibrosis (measured by LSM by VCTE™)

• Results are supporting the American Diabetes Association guidelines to screen for clinically significant fibrosis in patients with T2DM with steatosis or elevated ALT

Prevalence of Advanced Liver Fibrosis in Patients With Severe Psoriasis

Maybury CM, et al., JAMA Dermatology 2019;155(9):1028-1032


Objectives	 To describe the prevalence of and evaluate clinical factors associated with advanced fibrosis in people with severe psoriasis
Method	 Enrollment criteria Subjects were recruited based on the diagnosis of severe chronic plaque psoriasis (PASI>=10) by a dermatologist, irrespective of their current psoriasis treatment (e.g., Methotrexate (MTX) & biologics) FibroScan® examination LSM by VCTE[™]>=8.7 kPa was considered as advanced fibrosis (F≥F3)
Patients analyzed	 400 patients with psoriasis
Results	 Result of LSM by VCTE™ 333/400 (83%) had an successful LSM by VCTE™ 47/333 (14.1%) had advanced fibrosis based on LSM by VCTE™ (cf. Fig. 1) Use of methotrexate (MTX) 85/400 (21%) were taking MTX, and 340/400 (85%) had been exposed to MTX Mean MTX dosage was 15mg weekly Median duration of MTX exposure was 0.6 years As most individuals with advanced fibrosis were not taking MTX, MTX exposure was not associated with advanced liver fibrosis
	 Multivariate model predicting advanced fibrosis by LSM was a combination of below factors Increased central obesity Increased insulin resistance Increased psoriasis severity Increased AST level Increased platelet count Reduced alcohol use

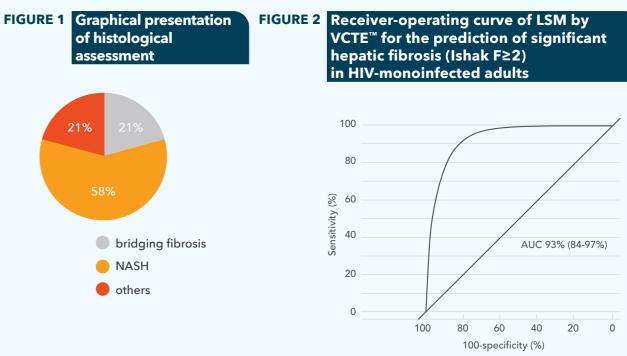
VCTE™: Vibration Controlled Transient Elastography • LSM: Liver Stiffness Measurement • PASI: Psoriasis Area Severity Index score • MTX: Methotrexate • AST: Aspartate Aminotransferase

Key points

- Advanced fibrosis assessed by LSM by VCTE[™] is common in patients with severe psoriasis (7-fold increase when compared to the general population)
- Methotrexate treatment is unlikely to be the most important risk factor of advanced fibrosis

• People with severe psoriasis should be screened for advanced liver fibrosis irrespective of their treatment or medication

Transient elastography for the detection of hepatic fibrosis in HIV-monoinfected adults with elevated aminotransferases on antiretroviral therapy


Morse CG, et al., AIDS 2015;29(17):2297-302

Objectives	 To evaluate the accuracy of liver stiffness (LSM) measured by VCTE[™] for the detection of liver fibrosis in HIV-mono-infected adults
Method	 HIV -infected adults with elevated aminotransferase levels for at least 6 months while receiving antiretroviral therapy, and without known causes of chronic liver disease were recruited Patients were prospectively evaluated by LSM by VCTE™, other noninvasive markers of fibrosis (FIB-4, APRI, NAFLD fibrosis Score), and percutaneous liver biopsy (fibrosis staged using the Ishak scoring system) At least 10 measurements of LSM by VCTE™ were made using M probe, results were considered reliable if the success rate was at least 60% & IQR/median ratio was 0.3 or less
Patients analyzed	 66 HIV mono-infected patients
	 Liver biopsy (n=66) (cf. Fig. 1) Bridging fibrosis (Ishak F3-4) was present in patients (21%) Nonalcoholic steatohepatitis (NASH) in 38 patients (58%) (cf. Fig. 1)
Results	 LSM by VCTE™ (n=59) 89% of exams were deemed reliable Median LSM was 5.9 kPa LSM ≥ 7.1 kPa in 25 (42%) LSM was elevated (>7.1 kPa) in 21/33 (64%) participants with steatohepatitis AUROC 0.93 for detection of moderate fibrosis (Ishak F>=2) with an optimal cut-off value of 7.1 kPa (cf. Fig. 2)
	 Comparison with other noninvasive fibrosis markers (Table 1) LSM by VCTE[™] had the best diagnostic performance (AUROC) vs other non-invasive tests evaluated LSM by VCTE[™] had high values for both sensitivity, specificity

VCTE[™]: Vibration Controlled Transient Elastography • LSM: Liver Stiffness Measurement • NAFLD: Non-alcoholic Fatty Liver Disease • NASH: Non-alcoholic Steatohepatitis • HIV: Human Immunodeficiency Virus • APRI: AST/Platelet Ratio Index • FIB-4: Fibrosis-4 Index • NFS/NAFLD-FS: NAFLD Fibrosis Score • AUROC: Area Under Receiving Operator Characteristics Curve

Key points

 LSM by VCTE[™] was the best noninvasive predictor of significant fibrosis in HIV-monoinfected adults with biopsy-proven liver disease

TABLE 1 Performance of LSM by VCTE™, APRI, FIB-4 & NFS for the detection of significant fibrosis (Ishak F≥2) in HIV-monoinfected adults with elevated aminotransferase & reliable LSM (n-59)

	VCTE™	APRI [12]	FIB-4 [19}	NAFLD-FS [14]
AUROC (%, 95% CI)	93 (86-99)	61 (46-77)	64 (49-79)	70 (55-85)
Cut-off (KPa) ^a	≥7.1	>1.5	>2.67	>0.676
Sensitivity (%)	93	21	21	14
Specificity (%)	73	82	89	96
Positive predictive value (%)	52	27	38	50
Negative predictive value (%)	97	77	78	78

LSM by VCTE[™] ■

• These results support the continued use of LSM by VCTE[™] for fibrosis screening in HIV-monoinfected patients with elevated aminotransferases

Non-invasive diagnosis of liver fibrosis in patients with alcohol-related liver disease by transient elastography: an individual patient data meta-analysis

Nguyen-Khac E, et al., The Lancet Gastroenterology & Hepatology 2018;3(9):614-625

Objectives	 To determine specific diagnostic cut-off values for LSM by VCTE[™] in alcohol-related fibrosis To assess the effect of aminotransferase concentrations, bilirubin concentrations, and presence of asymptomatic and non-severe alcoholic hepatitis on LSM by VCTE[™]
Method	 Search on PubMed led to identify 10 eligible studies that included patients with alcohol-related liver disease, liver biopsy, and LSM by VCTE[™] results available Specific diagnostic cut-offs were tested based on AST & bilirubin levels
Patients analyzed	 1026 patients with Alcoholic Liver Disease
Results	 Diagnostic performances of LSM by VCTE[™] and optimal cut-offs (cf. Table 1) Performances and cut-offs as function of AST and bilirubin levels Both bilirubin and AST levels were significantly correlated with LSM by VCTE[™] Bilirubin/AST-adjusted LSM cut-off values are proposed (cf. Table 2)

VCTE[™]: Vibration Controlled Transient Elastography • LSM: Liver Stiffness Measurement • AUROC: Area Under Receiving Operator Characteristics Curve • PPV: Positive Predictive Value • NPV: Negative Predictive Value • ALD: Alcohol-related Liver Disease • AST: Aspartate Aminotransferase

Key points

- Diagnostic performances of LSM by VCTE™ for advanced fibrosis and cirrhosis assessment in ALD are excellent
- LSM by VCTE[™] can be used for the noninvasive diagnosis of liver fibrosis in patients with alcohol-related liver disease, but

TABLE 1 Performance of LSM by VCTE™ vs histology for fibrosis assessment (with optimal LSM by VCTE™ cut-offs maximizing the sum of sensitivity & specificity)

Fibrosis stage	Diagnostic Performance (AUROC)	Optimal LSM cut-offs	Sensitivity	Specificity	PPV	NPV
F>=1	0.83	7.0 kPa	0.79	0.71	0.94	0.38
F>=2	0.86	9.0 kPa	0.78	0.77	0.90	0.49
F>=3	0.90	12.1 kPa	0.81	0.83	0.85	0.72
F=4	0.91	18.6 kPa	0.84	0.85	0.74	0.87

TABLE 2Diagnostic performances & optimal cut-offs according to combined
AST & bilirubin concentrations

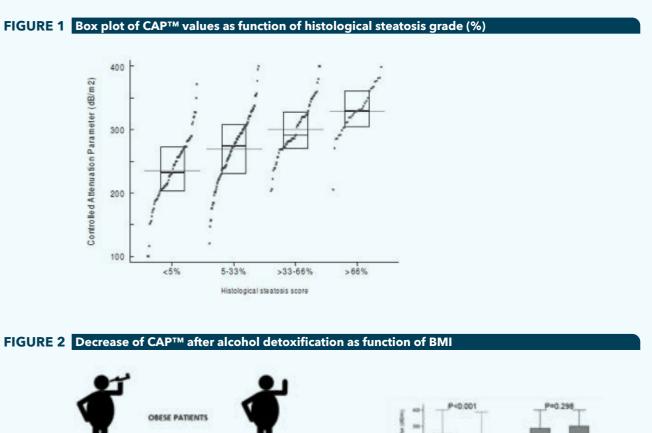
	AST<38.7 IU/L and bilirubin <9 μmol/L	AST 38.7-75 IU/L and bilirubin <9 μmol/L or AST<38.7 IU/L and bilirubin 9-16 μmol/L	AST 38.7-75 IU/L and bilirubin 9-16 µmol/L	AST >75 IU/L and bilirubin >16 µmol/L
≥F1				
Cut off (kPa)	5.6	6.9	8.4	9.6
AUROC	0.82	0.86	0.90	0.98
Sensitivity	0.83	0.85	0.83	0.89
Specificity	0.56	0.54	0.71	0.76
≥F2				
Cut off (kPa)	6.9	8.1	8.8	11.6
AUROC	0.87	0.88	0.90	0.89
Sensitivity	0.80	0.89	0.85	0.83
Specificity	0.77	0.64	0.82	0.79
≥F3				
Cut off (kPa)	8.8	11.2	12.3	16.1
AUROC	0.92	0.91	0.90	0.92
Sensitivity	0.80	0.80	0.83	0.83
Specificity	0.75	0.79	0.76	0.80
F4				
Cut off (kPa)	12.1	15.4	19.9	25.9
AUROC	0.92	0.93	0.92	0.96
Sensitivity	0.85	0.83	0.86	0.81
Specificity	0.84	0.82	0.86	0.80

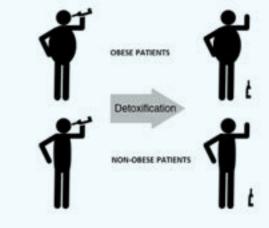
LSM by VCTE[™] ■

diagnostic cut-offs used should be adjusted to account for AST & bilirubin concentrations

• When AST & bilirubin levels are normal, diagnostic cut-offs are very similar to those used in chronic viral hepatitis C

Controlled Attenuation Parameter And Alcoholic Hepatic Steatosis: Diagnostic Accuracy and Role Of Alcohol Detoxification


Thiele M, et al., Journal of Hepatology 2018;68(5):1025-1032


Objectives	 To validate CAP™ for assessment of alcoholic steatosis using liver biopsy as the reference To study the effect of alcohol detoxification on CAP™
Method	 For diagnostic cohort Liver biopsy Regular Ultrasound CAP™ performed within 72 hours of liver biopsy, either during outpatient visit or at the beginning of hospitalization For detoxification cohort Laboratory testing Metabolic profiling CAP™ (at baseline & at discharge from hospital) Abdominal ultrasound
Patients analyzed	 269 patients (diagnostic cohort) 293 patients (detoxification cohort)
Results	 CAP™ is a good non-invasive marker of hepatic steatosis (cf. Fig. 1) CAP™ decreases after short term alcoholl detoxification, except in obese patients (cf. Fig. 2)

CAP™: Controlled Attenuation Parameter

Key points

- CAP[™] can be used to detect severe alcoholic • Time efficiency, cost and availability places steatosis >66% (CAP™ above 339 dB/m; 90% CAP[™] as the most convenient and reliable specificity; AUC 0.82) and to rule in steatosis non-invasive marker of steatosis in patients ≥5% (CAP[™] above 290 dB/m; specificity with alcoholic liver disease 88%; AUC 0.77)
- CAP™ decreased significantly (decrease of 32±47 dB/m, p<0.001) in non-obese (BMI<30 kg/m2) ALD patients after short-term alcohol withdrawal (median of 6.3 days)

FibroScan®Identifies Patients With Nonalcoholic Fatty Liver Disease and Cardiovascular Damage

Lombardi R, et al., Clinical Gastroenterology & Hepatology 2020;18(2):517-519

Objectives	 To evaluate whether LSM by VCTE[™] can detect CV damages
Method	 Recruited NAFLD patients underwent liver biopsy within 6 months from Cardiovascular (CV) & FibroScan®assessment Liver stiffness cut-off values for advanced fibrosis (F≥3) 8.7 kPa for M probe 7.2 kPa for XL probe Carotid Atherosclerosis was defined according to mean carotid intima-media thickness (cIMT) and presence of carotid plaques clMT values < 0.64 mm → normal clMT values > 0.9 mm → subclinical atherosclerosis Focal thickening > 1.2 mm of the carotid artery → carotid plaque Carotid arterial stiffness (pulse wave velocity, PWV) was measured by radiofrequency ultrasonography in 103 patients Conventional echocardiographic parameters such as ejection fraction, left ventricular mass diastolic dysfunction (E/A ratio <1), and epicardial adipose tissue were also measured.
Patients analyzed	• 472 NAFLD patients
Results	 CV risk profile Previous CV event occurred in 35 (8%) patients Increased cIMT (>0.64mm) was present in 373 (79%) patients, subclinical atherosclerosis (cIMT>0.9mm) in 165 (35%) and carotid plaques in 212 (45%) Mean PWV was 7.75±2.27 m/s Liver damage & CV parameters High LSM values (n=198; 42%) confirmed by histology (>=F3) in 84% of cases Carotid thickening & plaques, E/A ratio<1, increased PWV, and a past history of CV events were significantly more prevalent in patients with LSM> 8.7/7.2 kPa On multivariate analysis, LSM> 8.7/7.2 kPa as significantly associated with carotid plaques in the overall series In patients <50 years of age, LSM values >=8.7/7.2 kPa were also independently associated with increased PWV values

VCTE[™]: Vibration Controlled Transient Elastography • LSM: Liver Stiffness Measurement • NAFLD: Non-alcoholic Fatty Liver Disease • CV: Cardiovascular • E/A Ratio: Peak Early Diastolic and Peak Late Diastolic Ratio • cIMT: carotid Intima-Media Thickness • PWV: Pulse Wave Velocity

Key points

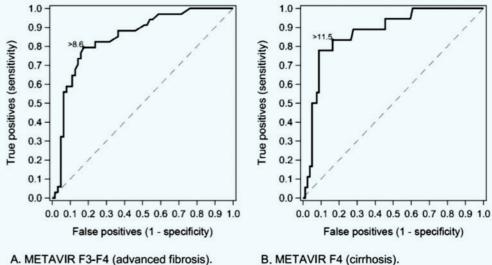
- LSM by VCTE[™] is associated with Cardiovascular alterations in NAFLD patients
- LSM by VCTE[™] is associated with the presence of carotid plaques in the overall series, identifying patients with a more advanced CV disease

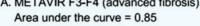
LSM by VCTE[™] ■

 In patients <50 years of age, who have significantly lower prevalence of metabolic alterations, LSM by VCTE[™] was independently associated with carotid stiffness, a very early marker of CV damage, previously associated with increased incidence of CV events and all-cause mortality

Validation of Transient Elastography Cut Points to Assess Advanced Liver Fibrosis in Children and Young Adults: The Boston Children's Hospital Experience

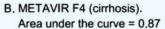
Lee CK, et al., Journal of Pediatrics 2018;198:84-89.e2


	Objectives	 To derive an optimal liver stiffness measurement (LSM by VCTE[™]) cutoff point to discriminate METAVIR fibrosis stage F4 To validate both METAVIR fibrosis stage F3-F4 & F4 cut-off points in a separate cohort
	Method	 Recruitment of children & young adults who underwent LSM by VCTE[™], as well as liver biopsy Probe selection of LSM by VCTE[™] was based on the followings, M probe was used if TP was >75cm S probe was used if TP <=75cm
	Patients analyzed	 267 patients of various etiologies, including autoimmune, viral, cholestasis, PSC, fatty liver & post transplantation
	Results	Optimal cut-off points to predict advanced fibrosis & cirrhosis were determined to be LSM>8.6 kPa & >11.5 kPa respectively, with diagnostic performances (AUROCs) of 0.85 & 0.87 (cf. Fig. 1) The diagnostic accuracy for predicting F3-F4 advanced fibrosis & F4 fibrosis in the calibration cohort was 81.4% & 83.5% respectively, compared with 67.1% & 75.3% in the validation cohort
		When analyzed on a subgroup of fasting patients, accuracy for the F3-F4 advanced fibrosis & F4 cirrhosis cut-off points were 72.7% & 79.5% respectively


VCTE[™]: Vibration Controlled Transient Elastography • LSM: Liver Stiffness Measurement • TP: Thoracic Parameter • PSC: Primary Sclerosing Cholangitis • AUROC: Area Under Receiving Operator Characteristics Curve

Key points

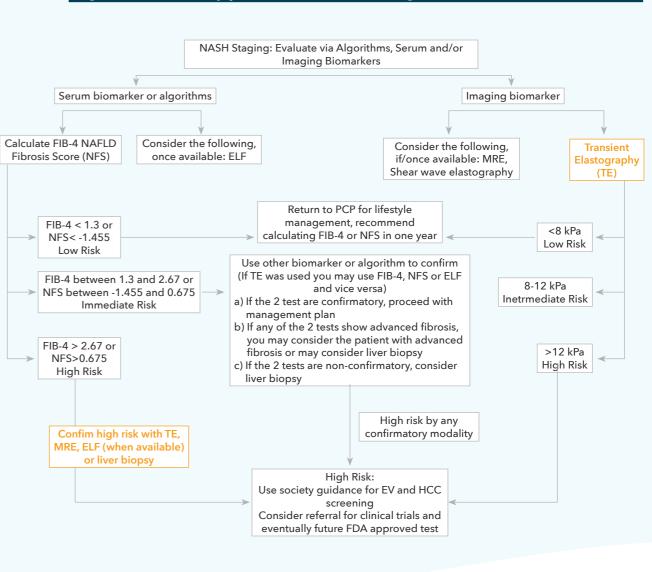
• Validated LSM cut points of 8.6 kPa & 11.5 kPa to predict advanced fibrosis & cirrhosis in separate cohorts of children & young adults with liver disease


FIGURE 1 ROC curves based on the calibration cohort. Optimal cut points for predicting A. METAVIR F3-F4 (advanced fibrosis) & B. F4 (cirrhosis)

LSM by VCTE[™] ■

• VCTE[™] may help identify children with greater risk of advanced fibrosis and those who need liver biopsy assessment and/or surveillance for the complications of cirrhosis in a variety of liver disorders

Role of Noninvasive Tests in Clinical Gastroenterology Practices to Identify Patients With Nonalcoholic Steatohepatitis at High Risk of Adverse Outcomes: Expert Panel Recommendations


Younossi ZM, et al., American Journal of Gastroenterology 2021;116(2):254-262

Objectives	 American College of Gastroenterology & Chronic Liver Disease Foundation jointly develop a practical decision tree/algorithm to risk stratify NAFLD/NASH
Method	 A review of literatures on non-invasive tests for evaluating patients with NAFD, then summarized to create a practical, easy-to-use algorithm that can be used in clinical practice
Patients analyzed	• NAFLD/NASH referrals from primary care & other specialists to liver specialists
	 To establish the diagnosis of NAFLD/NASH, clinicians need to decide the following Whether the patient has NAFLD by documentation of fatty liver & exclusion of excessive alcohol consumption Whether there are other etiologies of chronic liver disease (e.g., viral hepatitis, autoimmune liver disease, medications) Whether the patient is likely to have underlying NASH Whether fibrosis is present Whether fibrosis is at an advanced stage Straightforward practical diagnosis & staging decision tree algorithm for NAFLD/NASH (cf. Fig. 1) recommended for use by gastroenterologists
Results	 k hepatologists Once diagnosis of NAFLD/NASH is made, staging of fibrosis is indicated, especially for patients at risk of NASH & fibrosis Fibrosis can be staged by using either of the following, Serum biomarker FIB-4 or NFS, confirmed high risk with LSM by VCTE™, MRE or ELF or liver biopsy Second Non Invasive Test (NIT) can be performed to reduce the area of uncertainty Imaging biomarker LSM by VCTE™ LSM<8 kPa, especially those with <6kPa, considered as low risk LSM>=12 kPa, considered as high risk

VCTE[™]: Vibration Controlled Transient Elastography • LSM: Liver Stiffness Measurement • NAFLD: Non-alcoholic Fatty Liver Disease • NASH: Non-alcoholic Steatohepatitis • FIB-4: Fibrosis-4 Index • NFS: NAFLD Fibrosis Score • MRE: Magnetic Resonance Elastography • ELF: Enhanced Liver Fibrosis • NIT: Non-invasive Test

Key points

- LSM by VCTE[™] was recommended in this algorithm as the initial imaging biomarker for NASH staging
- The most important step is for clinicians to use NITs through an algorithm to risk stratify and identify patients with NASH who are at highest risk of adverse clinical outcomes

LSM by VCTE[™] ■

• This initial step can occur in the primary care or other specialty practice setting where patients at risk of NASH are seen (endocrinology, cardiology & gastroenterology)

FIGURE 1 Algorithm to identify patients with NASH at high risk of adverse outcomes